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ABSTRACT 

The major theoretical efforts dealing with grain-boundary diffusion 
have been reconsidered with a view to establishing their mathematical rigor 
and laying a firm foundation for further work. The details of Whipple's 
solution to the boundary value problem have been reconstructed and are given In 
this report. Fisher's approximate solution and Its relationship to the exact 
solution have been considered. A way of evaluating the accuracy of this 
aoproxiination has been outlined. The work of Borlsov et al., has been shown to 
be equivalent to that of Whipple. Finally, an outline Is presented of compu- 
tational problems directed toward improving our understanding of the relationship 
of grain-boundary diffusion to the usual model and evaluating various approxi- 
mations which are frequently used in the study of grain-boundary diffusion. 
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IMTRODUCTION 

Theories of grain-boundary diffusion invariably begin with the 
formulation of a boundary-value problem whose solution is expected to describe 
grain-boundary diffusion. A crucial question is then how well does the solution 
actually describe the phenomenon. To answer this two things are needed: an 
accurate experimental study of grain-boundary diffusion and an equally accurate 
solution of the boundary-value problem, ttifortunately the exact solution of the 
boundary-value problem is not usually possible in closed form and in the single 
case where an exact solution is known the form of the solution makes its 
numerical evaluation extremely difficult. As a result approximate solutions 
have been developed (in the case being considered the approximate solution 
antedates the exact solution). This raises another question of a purely 
mathematical nature, namely how accurate is the approximation. 

In this report the boundary-value problem treated by Fisher ' and 
(2) 

by Whipple  has been considered carefully in an attempt to resolve the 
following questions: 

1. Is Whipple's solution, in fact, exact? 
2. What are the weaknesses of Fisher's approximate treatment? 
3. What is the range of validity of Fisher's approximation? 

The first two of these questions have been answered, the second by 
pointing out that neglecting certain partial derivatives is not admissible 
under all circumstances. Whipple's solution is shown to be exact by means of a 
careful reworking of his analysis. The remaining question is partially answered I 
by outlining the calculations needed to -justify Fisher's solution. 

WHIPPLE'3 SOLUTION 

Statement of the Problem 

The idealized situation studied by Whipple  is that in which the 
half space, y > 0, is filled with a material of diffusivity D except for a thin 
slab of width 2a. This slab is bounded by the planes x ■ a and x = - a. The 

'/ '       s 
diffusivity in this slaV» is D (D > > D). At time t ■ 0 the concentration on the 
surface y ■ 0 is suddenly raised to unity and maintained at unity. The problem 
is to find the concentration C ■ C(x,y,t) elsewhere. 

i 
Let C denote the value of C in the thin slab. Then the diffusion 

equation says that 

in the slab. Outside the slab 

DW -^ (i) 

D92C-|£. (2) 



It is assumed that for t > 0, C is a continuous function of x and y. 
This moans that 

C - C fc x - ± a. (3) 

At the boundaries x ■ ± a, -^ is discontinuous and satisfies the 
equation 

i 

3x    3x x 

The derivatives involved in Eq. {h) are one sided derivatives and the prime (or 
lack of one) indicates the direction in which they are taken. 

On the surface y » 0, 

C(x,0,t) - 1 when t > 0. ($) 

When t = 0, 

C(x,y,0) - 0 if y> 0. (6) 

Approximate Boundary Condition at x s a 

An approximate boundary condition on the surface x « a vail now be 
derived. 

Because of the symmetry of the situation C is an even function of x. 
Hence it can be written as a power series in x with the odd powers of x missing. 
The coefficients are functions of y and t. 

2 
c'u^t) - C^t) + ~ C^t) + ... . (7) 

When the derivatives 
i 

at  'at + *• *   » 

aV    a2V 
■"■A1" ■      2   *   • • •     » «^^ 

ay       ay 
2  ' 

ax^ 

are substituted in Eq. (1) and terms involving second or higher powers of x are 
dropped, one obtains        i 9 •        t 

, / a c0 A    ac0 



for points in the slab (in the applications a is a very small number). 

Again dropping powers of x which are second or higher there results 

C - C0 and 

D 30 - n« ax" D ^2at x' ^ 

because of Eq. (3) and Eq. (h) and the fact that 

i 

(9) 

ac. 
ax 

i 
xC + ... 

Now since G ■ C0 at x ■ a, and the partial derivatives with respect 

to y and t on the surface x ■ a depend only on the common value of C and CL on 
this surface, 

i 

and 
ac 
at at 

*2 

2  • 

372 

(10) 

at x ■ a. 

Substituting all of these quantities in Eq. (8) gives 

• a?c D ac ac „ D r2 + äto"ätforx"a- ay 
(ii) 

The differential Eq. (2) can be used to write this last equation in a 
more usable form. Putting x ■ a in 

D4+D4-|C 
ax2      ay2   at 

which holds for all points outside the slab, and combining this with Eq. (11) gives 

» a C  D ^C _ 

ax2 aait 
fl-Jffcrx... (12) 
I 

This is the form in which the approximate boundary condition will be used. 

The Fourier-Laplace Transform 

In order to solve the diffusion equation the function C(x,y,t) is 
transformed by both a Fourier and a Laplace transform. The function defined is 

>Kx,n,X) - f  exp(-Xt)dt f  sin(|iy) C(x,y,t)dy. 

^0        ^0 

(13) 



For purposes of discussion the intermediate function 

m 

e(x,n,t) -J sin(|iy) C(x,y,t)dy (H*) 

is defined. 

The convergence of Ö(x,|i,t) will first be determined. 

The function C(x,y,t) is bounded by the value it would have if D ■ D , 
that is if the material outside the slab had the same diffusivity as the material 
inside.   The solution to this problem is well known.    '   It is 

C B erfc -£ 
Wt 

Therefore since A 

0 < C(x,y,t) < erfc 
2\fDh 

it can be seen that 

f C(x,y,t)dy exists, 

and hence 

j sin(|iy) C(x,y,t)dy exists. 

(15) 

This also gives a bound on 9(xJn,t): 

|e(x,n,t)| < j erfc 
fSflPt 

d.-av^ 

The second integral, 

J    e(x,n,t) exp(-Xt)dt, 

will now be discussed. First it is observed that X, is a complex number with 
positive real part. This will insure convergence since 

o't 
|e(x,ji,t) exp(-\t)| < 2V^ exp(-at) 

.■ ■. ■ 



■ ■ 

where a is the real part of X, and 

->   IT 

lim 
Um 

2\/Li exp(-at) exp at 0. 

This also shows that >Kx,!i,X) has a bound which is independent of x and \i (but 
not X). 

When the function iKx,n,X) is obtained, it will be seen to possess the 
correct properties so that the inversion formula 

Y + iR 

e(x#,t) - -^T lim   I" exp(Xt) >Kx,li,X)dX 
- iR 

2ni 
R-*» 

holds for Y > 0« From the properties on C(x,y,t) it will be shown that 

C(x,y,t) - - j e(x,ti,t) sin(My)djx. 

Transformation of the Differential Eqtiation 

When C(x,y,t) is transformed by the Fourier-Laplace transform, the 
2       2 2       2 

derivatives dC/dx and 8 C/9x   are transformed into d^'/dx and 8 |/dx , respectively. 

The derivative 8 C/ay   will now be transformed.   First it must be 
observed that 

lim   C(x,y,t) ■ 0, and 

lim   |£ - 0. 
y- ^ 

Then the integration 

1 sin([iy) 
/ 2 
•S-sldy   can be performed to give 
lay" 



f. sin(wr) (^-|j dy - sin(My)[g^| 

y - o 

cos(My) |£ dy 

- \i. cos(^y) C(x,y,t) 

y ■ • 

y - 0 

- H2 | sin(My) C(x,y,t)dy 

nC(x,0,t) - [i    I    C(x,y,t) sin(My)cbr. 

Observing that C(x,0,t) ■ 1, multiplying this last expression by exp(-Xt), and 
integrating gives 

00 oo 
'a2ci exp(-Xt)dt   |     sin(My)|^   dy 
[ay ' 

» 09 CD 

ix   I    exp(-Xt)dt - n    [    exp(-\t)dt   I    C(x,y,t) sin(ny)dy 

$ - [i   >Kx,!a,X)  . 

32C Thus   —s is transformed into 
3y 

u       2 r - il    >Kx,H,X)   . 

To transform |r the integral I  exp(-Xt) TT dt is evaluated. Because 

dt ■ exp(-Xt) C(x,y,t) 

C(x,y,0) = 0, 

CO 

I    exp(-Xt) 
0 

09 

- X j  exp(-Xt) C(x,y,t)dt. 

at 

t ■» 

t - 0    0 

eo 

+ X f exp(-Xt) C(x,y,t)dt 

Multiplying hy sin(ny) and integrating gives 

J    sin(My)dyJ exp(-Xt) ||| dt - Xj  sinCpy)^ f sin(|jy)(^rl   exp(-Xt) C(x,y,t)dt. 

0 "'O 



3C Thus TT is transformed into ot 

\\Kx,n,X). 

From these results it follows that the differential Eq. (2) is 
transformed into the equation 

/ 

D 
8x 

Rewriting this gives 

a.2 
2  X ♦ ± f-* 

The boundary condition Eq. (12) transforms into 

ax     \ 

(16) 

(17) 

Solution of the Transformed Squation 

The function >Kx,n,X) is to be regarded as a complex function of the 
real variable x for fixed \i and X. Then Eq. (16) is essentially an ordinary 
differential equation in x with complex coefficients. 

The solution of Eq. (16) is 

\Kx,^,X) » A exp xVji + jd + B exp - x\l\i   * -rl   + E , (18) 

where A, B, and E are functions of X and |i and the radical indicates that the 
square root with positive real part be taken. Since t is a bounded function of 
x, we can reject the term 

XV n + -  . 
u 

This leaves B and E yet to be determined. Because the term 

B exp d^}\ 
is a solution of the homogeneous equation 

it can be concluded that 

4-Mt-o, 
8x^ 

ü +J5 X 



,       ■■•■•■    ■        -■■• ■ 

and therefore 

E » 

M^ + t' 
(19) 

The function B must now be adjusted so that "j satisfies the boundary 
condition Eq. (17) for x ■ a. Substituting i, 

öx - B 'ix   ^ exp |-xV77| 
and 

2-^" B 2     X u   ♦ -   exp - x V u   + r 

into Eq. (17) when x » a gives 

* ^ + D + iV^ + n - B 
/ •  ^ 

e^) - ä\/n 2^- D" 
xn 

Solving for B one obtains 

^- 1 
i  J 

exp ayia   ♦ 

2. ^ 2 x D-i/2 _ X A 

Therefore >!<x,iJ.,X) is determined uniquely to be 1 + t where 
X     6 

1 ^: 
and 1      1 

§- - l| H exp - (x-a)Vn2 ♦ J 

.^^% **W*h* 
Inversion of % 

(20) 

S will be used to denote the inverse of t,. The formula for C. is 

Y* iR 
dX r 

where Y> 0« The value of the quantity in the brackets is easily seen to be 
independent of y AS long as Y> 0- This will be discussed later. 

8 



■ ■.■--.-.. 

When the substitutionsj 

y - TiVDt,   n ■ -p- and \ - f- j 
VDt t 

are made, C, reduces to 

Cj ■ -y  /    [x   sin(n Ti)d|j,    lim   / 
Y+iR , 

lin   / -£2EJ:_dX. 

^""Y- iR    K2+ xf)  xl  . 

Since the value of C, was independent of Y before the substitution 

the last form is also independent of the choice of Y as long as Y > 0.   The 
primes can be dropped and C, can be written 

h'T J    V sin(fiTi)dn 
n^i   0 

Y + iR 
lim 
R-vafl 

f _2E. X      dX 
X 

fY - iR 

For the purposes of evaluating the contour integral, X will be 
written as x + iy.   (There should be no confusion of this x and y with the 
original x and y of the problem.) 

The integrand, 

ejgo X 

[ix2 + XJ X    ' 

is analytic for all values of X except for X = 0 and X a - n where it has 
simple poles. Therefore the integral of this function about a closed contour 
which encloses both poles has the value 

cxp(-|x2) 
2 • 2nin ■ 

since the residue at X ^ 0 is -^ and the residue at X . ,2 is - 22bii 

Let the closed contour to be used consist of the line x «= Y between 

the points Y - iR and the point y + iR ^ the part of the circle, X «» R e , 
I    to 0 

which is to the left of the line x * Y» where R ■ VR + y , Call this contour, 
i «       ? 

as shown in Figure 1, T.    Note that as R->« so does R .    Suppose R   > p, .   Then 

exo X 

i    (/»Xj rf.2nl 
C
XP(-U ) 

M. 



Now as IU«o it v;ill be seen that the contribution to this integral 
fron the circular part goes to zero. The integrand along this part of T is 

, » le. 
CXPU 

G
 ) 

(p, + R e JR e 

Since the real part of \ on this curve is never greater than y, 

|exp(R e )| < exp y 

on it.   The point R   e     is never closer to the point - a   than R   - \i 

and 

Thus 

In   + R   e    I > R   - n , 

cxp(R e    ) 
/ 2 A D« iOv » iG (li   + R e    )R e 

exp Y 
-     i       ? 

(R   - \i )R 
7 on r. 

10 



The length of the curve PpP.P-, is less than 2nR j therefore 

/ 

esJ^dx 

2 3 1 
(pi2 + X)X 

2n exp Y 

(R1 - n2) 

This integral can be seen to approach zero as IU« .   Hence 

Y+ iR 

lim 

Y - iR 

-faJL. $ - 2ni 1 - exP(^ ) 

n 

This permits C   to be written: 

.■1/ sin([XTi) 1 - exp(-|/) 

'0 '0 

^»2 

i p 
cosdir) ) exp(-n, )d|j, 

0 

if ,2 « 
- 1 - -^ j      exp(- ^dT)   « 1 - erf 2 . erfc 2 

These last integrals may be evaluated from a standard table of integrals, 
for example, formulas l|06 and h32 from the table of integrals of the Handbook of 

Chemistry and Physics^  ', 

Inversion of i 

Let Or, denote the inverse of >L.    Then 

BO 

~r-   I    sin(|jy)cifi 
niJQ 

Y + iR 

lim   I exp(\t)\}p dX 

Y - iR 

where Y> O«    It will be seen later that Cp is independent of the choice of Y 
as long as Y > O» 

The following substitutions will now be made: 
i 

x-a _   y a       .     D       0     A - 1 _ 
» Q     .—■> 0   u   * 

Dt iDt fBt -fDt 
(A-l)a, n 

^Dt 
and X ■ r- . 

11 



t- is reduced by these to 

tYDt (A-!)/ exp - sYix '^x1 

/ '2   •%/. »2  1,1 12   •   «v 

When this is put into the expression for C? and the substitution 
completed one obtains 

itnf \i sin(p.Ti)d(x 

Y+ iR 
p(\ - cVl-'-2 + X)d\ lim     f -   

^ JY - iR       (n2 + X)(^2 + i-yn2 ♦ X + X). 

after droppinc the primes. Note that y > 0 and this expression for C- inherits 
the property of being independent of y. 

2 
It is desirable, however, to take the contour integral along the line 

x B - \ic.    (Again X is written x + iy for the contour integration.) The point 
2 

X ■ - p, is a branch point of the integral and must therefore be avoided. The 
contour which will be used is shown in Figure 2 and is denoted by r(R). 

-/iz + iR 

FDmii 2. 

12 



The curved part of r(R) is a semi-circle of unit radius with center 

at the point - u , while the rest of f(R) consists of the line x ■ - n   between 
2 2 the points - M- - iR and - n + iR. 

The function V?T X is analytic for all values of X where X is not 
2 2 real and all real values of X greater than - n . The only zero of (n + X) is 

2 2  T  / 2 
at X ■ -u,. The function An + - VM- + ^ + ^ is analytic at all points where 

|i + X is. It cannot be zero if X has an imaginary component because a > 0 

and Im("v p. + X) has the same sign as iPi(X). It cannot be zero for real X 
2 I  2 greater than - \i   because Ä > 1 and y M- + X is a positive real number in this 

case. 

Therefore the function 

exp(X- rJn   + >0 

(ia2 + xMn2 + i"v? + ^+ ^ 

f(X) 

is analytic at all points en r(R) and all points to the right of r(R).   From 
this it follows that 

/ Y + iR 
J       f(X)dX-   f f(X)dX 

r(R) 
f(X)dX + 

y - iR ■Vj 
/ 
p p r7 1 

f(X)dX . 

Alone the segment P0P^, X = x + i? and 

1/ + x| > R, 

(because; Iriy \i   + X) has the sar.e si'T. as Ir:(X)), and 

Ic;:;- X - ^-six + X    | < exp Y 

(because rcc(7 a   + X) > j).    This ^ives that 

/ 
P P 

2*3 

f(X)dX £X2JC 
.2 (Y+l* ) 

and this goes to zero as R-»» . A similar argument holds for P7Pi. These 

13 



statements show that 

lim 
/ 
r(R) 

Y + iH 

f(X)d\ - lim f    f(X)d\ . 
fU. 

Y - iR 

The transformation v - V|x + X will now be performed on the integral 
along r(R), where again the radical indicates the square root with positive real 

part. This transformation takes r(R) into the contour T (R) shown in Figure 3. 

FIGIRE 3. 

Avfi 

This contour consists of parts of the lines y B x and y = - x and one- 
fourth of the unit circle with center at the origin. Thus 

/ 

exp(X -dTT X)dX 2 exp(- A] exp(v   - vC)dv 

r(R)   (^ + X)(Ai2 + ^V^r+^+X)       (A-l)       fm     (^ + | v + —SL)V 
p        A - i 

where ß ■ (A - l)a as before. 

1Ü 



Since the integrand 

exp(v   - vg) 

^*l* )v ß     A- 1 

is analytic for all v in the half plane x > 0, f (R) can be replaced by the 

contour T (S) shown in Figure h, where S » -r . 

S + iS 

KIGlitS \x. 

y+iy 

y-\y 

rM{S) 

S-iS 

This gives the following expression for Cp 

p, exp(-ii ) sin(|iri)dn lim 
/. 

exp(v   - vC)dv 

r (s)  \*,I,JL; 
2\ 

ß ' A-l 

15 



11 
Along the contour T (S) the following substitutions are valid: 

exp(- v?) 
\i sin([j.T]) " - |- cos(|iii), j exp(- vc')^' 

ti 
(because Re(v) > 0 on T (S) ), and 

/ 2\ r i / 2  v   v   r  f-ejqpki   +ö + pi exp 
2 J. v x  v I ;  i 

2 
(because |i, + -^ + 73? has positive real part along T (S) ) 

Applying these substitutions to C? gives 

^| + si| 

2    2. n 1 

GE 

cos(|jiTi)dp, lim (Q) 
3-+oe 

do . 

where 

L. - f exp(-M. a)'do I exp 

r (s) 
f A-o 2  ,„*     o-l^J 

The limit of Q as S+«> is actually an improper real integral. 
Therefore it is permissible to interchange this limit process with the various 
integrations to get 

=2 

«w co        00 r ^ 

" Hh 1^   J ^  j  dCT J cos(WJ exp(-ti2a)(^ lim J 
n i     c     10 r**rf,(s) 

A-o 2 
exp^ v **f dv 

The last integration must be divided into two cases. The case where 
a > A gives an integral of the form 

lim 
S+oo I, exp(-Fv - Gv)dv 

r   (S) 

where F and G are positive real numbers. The integrand is analytic for all 
11 

values of v. Therefore the integral around a closed path is zero. If f   (S) 
is closed by the vertical line from S + iS to S - iS one obtains the contour shown 
in Figure 5» 

16 



— 

A S+iS 

r  / P4 

/ , 
1 

^3 ry+iy 

i 
X 

P2 vT-iy 

• \l 
P, 

Kirtrc ■ . S-iS 

Along the line segment P. P , v a S + iy where - S < y < S.   For these 
values of v 

|exp(-Fv   - C-v)|    ^ exp - F(S2 - y2) - 03 < exp(-GS). 

This «rives 

/ 

2 
exp( - Fv   - Gv)dv 

Vi 
< 2S exp(-GS), 

and this ^oes to zero as S+* .   Thus 

lim 
S-fdo 

I exD(-Fv2 - Gv)dv - 0. 
11.   . r (s) 

17 



The case where o < t gives an integral of the form 

lim i. exp(Jv   - Kv)äv 

r (s) 

where J and K are positive real numbers.   This will be shown to be equal to 

Y + iS 

lim 
S*ao L exp(Jv   - Kv)dv . 

V - iS 

To do this it must be observed that 

I exp(Jv   - Kv)dv 

r (s) 

differs from 

Y + iS 

exp(Jv   - Kv)dv 

^ - iS 

by the contribution from the horizontal segments P, P- and P,P   shown in Figure 6. 

KIGIlr; 6, 

*: 

X + iS 

y-iS 

S + iS 

S-iS 

18 



.. .      .. 

For the integral along the segment P, P^, v ■ x + IS where Y < x < S. 

Wheii v is on the segment of this line where Y < x < S/2, 
i 

,2 

|exp(Jv2 - Kv)l   - exp[j(x2 - S2) - Kx] < exp 
1.2 ö       .2 r - S' exp ■f- 

When v is on the segment of P, P^ where S/2 < x < S, 

exp(Jv2 - Kv)| - exp ll(x
2 - S2) - Kx < exp 

KS 
1    * 

Therefore 

exp(Jv   - Kv)dv 

Vs 
< S 

2\ 
exp 3JS" KS 

+ exp 2 

and this goes to zero as S+oo . 

This now leaves for C2 the expression 

C2B 
.-Li-    j   d^'   (   da j   cosM exp(- ^2a)Qd1i , 

n i     '  ^ J-L o 

(21) 

where 
Y+ iS - 

Q ■ lin     1                exp 

^   { - iS 
Piv -^ +T) dv . 

Let v be written Y + iy for the evaluation of Q.   Then dv s • idy and 

Y+ iS 
j               e^(Av   - Bv)dv 

^Y - iS 

3            1 
- 

■ i          exp A(Y
2
 - y2 + 2r5a) - B(Y + iy) dy 

k          1 L J 

- i exp(AY2 - BY) [     exp(-Ay2) cos 

-S 

(2AY - B)y dy 
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■    ■ 

2 f 2 
2i expUy   - By)   /    exp(-Ay ) cos (2AY-B)y dy 

As S+co   this last expression approaches 

Q = 2i expUy2 - By) -^-   exp 
2VÄ 

. ijAV - i^r ^ B2 

EA 
iTn 

1A 
exp   - r 

S r 

Putting in A ■ -p? and B B C   + -s~ gives 

«•iWg ^f-i^ 
; 

Since Q does not involve n, the third integration in forrcula (21) can 
be done separately 

j cosdir,) exp(-[i a)dfi =  exp 
J0 2^" 

/      2 \ 
(22) 

The integration on ? can be performed separately by observing that Q 
t 

is the only factor involving ? • 

00 

Qd^ = i Vn / exp 

eo 

1 A-l 
H A-o 

tl Ay1 

Substituting z = hji-  %   + ^r] gives dz - ^y ^   d?' 2VA-o ß 

and C      x ( 2 /   Qd^   ■ 2iVT      / exp(-z )dz B ni erfc 

Combining fornulas (22) and (23) with (21) gives 

.274-0^* p (23) 

1  a   r    1        /      I 
Co B ZI /    -^ exp   - ft;   erfc 2 ^T^J,    -fa        I    ^l 

1nM 
2 »A-o C + 

a-l do 

2Tir-'l 
,-3/2 exp   - T^   erfc ho 

1-.M-1 L . £^l 
2 VÄ^ p      ß da . 
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This gives the final solution 

c - c1 + c2 (25) 

where 

(^ = erfc ~ 

Discussion of Inversion Formulas 

In the half plane Ite(X) > 0 both 1 ■ —~ ana 

i'n 

^2 + D 
\l - ^ exP[. ^fi^^   (x-a)] 

I 2 ^ M In' 2 A D./l "T ,. ,) 1^ + DI lD ^ +äv^ +i; + Xl 

are of order l/X . When the real part of X is not negative, Jib. •♦• Xj > )x| 

and It X2| < DU . Similarly when Re(X) > 0, ID' \I
2
 + ^|i2 + ^ + x| > (x| 

because 

Thus 

LD / 'f   X 
has its real and imaginary parts the same sign as those of X. 

(V2I< -1 DIHI. 

lihen Re(X) > 0 both %  and % are analytic functions of X and ars both 

real if X is real. Therefore by a theorem in Churchill  the inverse of 

Y + iR 

\|' ■ t + t is given by the formula 

e(x,ti,t) * ~r lim j 
IU- J

Y - iR 

t exp(Xb) dX, 

for Y > 0, and is independent of Y- 

It was shown before that    1   C(x,y,t)dy exists.   Therefore since 

0 
C(x,7,t) is assiin.ed to be a continuous diffcrentiablc function of y, one can 

write^7\ 
CD " • 

C(x,y,t) - -   1    sin(|jy)dtx    I   C(x,y ,t)sin(|jy )dy   - -    I    sin(^y)9(x,n,t)d|a. 
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Let C(x,y,t) be a solution. Then 0(x,n,t) and >Kx,|j,,\), determined by 
C(x,y,t), must exist. >Kx,|i.,X) is then uniquely determined and uniquely inverted 
to 9(x,u,t). But 9(x.|i,t) has a unique inverse also hence there is only one 
possible choice for C(x,y,t). 

USHER'S SOLUTION 

Statement of the Problem 

(2) 
The idealized situation studied by Fisherv ' is the same as that of 

Uhipple. The half space, y > 0, is filled with a material of diffusivity D 
except for a thin slab of width 5. This slab is bounded by the planes x » 0 

i.i 
and x ,s - 6. The diffusivity in this slab is D (D > > D). At time t » 0 
the concentration on the surface y = 0 is suddenly raised to unity and maintained 
at unity. The problem is to find C ■ C(x,y,t) elsewhere. Fisher refers to the 
plane y = 0 as the free surface. 

The diffusion equation holds for the concentration C outside the thin 
slab. That is 

for C outside the thin slab. 

D\rc-|i, (26) 

The Differential Equation in the Slab 

Let the thickness of the slab, 6, be very small so that variations in 
C across it are negligible.   Consider a rectangular parallelopiped in the slab of 
length Az in the z-direction, of width tej in the y-direction and of width slightly 
greater than 5 in the x-direction.    Let this be oriented in the slab with two of 
its faces lust outside the slab and parallel to the slab.   Let P be the point at 
the center of this parallelopiped.    Let 30/dt, denote the value of that derivative 
at the point P.   Then the flow of material into this volume is approximately 
6(Av)(Az) 9C/at. 

This can also be written as the sum of the flow through the sides of 
the parallelopiped.   In the z-direction there is no flow.   In the x-direction 
there is the flow F   just outside the surface x B 0 (and its negative just 

outside the surface x ■ - 5).   Therefore the amount of material coming into the 
volume in the x-direction is 

-2(FX)0 (Ay) (Az), 

where the subscript zero indicates that P  is evaluated just outside the slab. 

Of course by Fick's law (outside the slab) 
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The flow at the point P in the y-direction is F and so the amount 
v 

of material coming into the volume in the y-direction is 

7   ay 2 Uz)6 - 
/   äF . 
y ay 2 

a? 
(Az)5 « - -? (A7)(A2)6. 

30 Noting that inside the slab F ■ - D ~ and equating the expressions 

for the amount of material flowing into the volume gives 

ay 
-2(Fx)0 (Ay)(Az) - ^ (Ay)(AZ)6 - f (A5r)Uz)6 

or 

2D (ÖG] ,. n« a
2C ss 8C 

1 fe)0 
+ D 72 at 

J   oy 
(27) 

for the concentration in the slab. 

Fisher's ApproxLnate Solution 

At this stage the problem is identical to that solved by Whipple. 
Equations (26) and (27) are just the sains as Eqs. (2) and (11). 

Equation (26) is simplified by the observation that the concentration 
of the diffusing material will be much greater in the slab than outside because 
of the much higher diffusivity inside. This means that near the surface x = 0 
and far fron the surface y B 0 the flow of material is normal to the surface 
v « o 

In terms of the parameters of the problem this says that 

if < < m ■ 
From this it is concluded that 

i4 < < I4I 
öy ax" 

Equation (26) is therefore reduced to 
2-, 

n a •J _ a>-« 

7*2" at ax 
(28) 

for ooints outside the slab. 
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Let the following substitutions be made: 

h ^2 ' ^     5 ^1 
^(g 

Ci^ ' 

Equation (28), written in terms of these dimensionless parameters, becomes 

(29) 

for points outside the slab and Eq. (27) becomes 

3 C _ ÖC 

ayi 
at. (30) 

for points in the slab. 

Fisher solves these two equations by a numerical method and uses the 
numerical solution to draw'sone conclusions about C(x,7,t). He observes that C 
rises in the slab at a rapidly decreasing rate. Because of this the value of C 
outside the slab can be treated as though the value of C in the slab is 
independent of the time. Let ^(y-,, t,) be the concentration in the slab. 

The assumption that 9(7., t,) is independent of the time gives for a 
solution of Eq. (29) 

taiy^  t-jj erfc 

1 X, \ "1 

\2V^ 
(31) 

and this takes on the value (p(y , t ) when x= 0. 

At this point Fisher's reasoning is difficult to follow. He says that 

outside the slab for most of the time. From this f in tho slab > > i; 
max 

he concludes that tho value of (p(y,, t.) can be derived approximately from Eq. (30) 

by assuring |~- o 0. 

This assumption applied to Eq. (30) is that 

2m +aj.0. 

However 

■iax1)0 ay; 

^"" V^ *{7v ^ cxp 

2, 

CtTi 

(32) 

2li 

i 
■ 

■   ■■ ■■'■    ■'■■   ■■■■■■ ■      ,, ■ 



for points outside the slab, therefore 

m    - - -^=r   cpCyp t^ . 

Putting this last expression into Eq. (32) gives 

which is essentially an ordinary differential equation. 

The solution to Eq. (33) which is bounded in y and satisfies the 
condition that C B 1 when y « 0 is 1 

(p(y1, t1) ■ exp 
VT 71   \ 
nlA t 1A, 

This gives the final formula for C. 

C » eiy 
VF 

i    n r/rriTH erfc h\ 
2^ 

or in terns of x, y, and t 

exp 
v?: 

^W (nDt) iA 
erfc x 11 Oh) 

DISCUSSION OF VALIDITY OF FORI.XLAS 

The solution derived ty '.^hippie, Eq. (25), is the exact solution to the 
diffusion equation with the approximate boundary condition Eq. (11), the boundary 

conditions Eqs. (U), (5), (6), and the conditions that ~ and C both go to zero as 

y-+ oo • His solution has the disadvantage of being a numerical integration. 

Fishers' formula, Eq. (3U), on the other hand, is ideal for computation 
if it is correct. The reasoning of Fisher will now be discussed. 

First the simplification of the diffusion equation to the form 

dC  _ d2C 
3t   6x2 

(35) 
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would have to be verified. This can be checked by using the exact solution of 

Whipple and comparing a2C/ax and a C/dy .    If, as seems not unlikely, 32C/dy 
2   2 

is negligible compared to 3 C/dx   for values of x and y of interest, then the 
concentration in that region would satisfy Eq. (35). 

The next step is difficult to check. Fisher concludes that ^.,0 

is a slowly varying function of time and therefore 

^ 1 
c ■ (pfy-L* V erfc 

2Vt^ 

(where cp is still an unknown function) satisfies the equation 

ac_ 
at. axj 

This is true if 

at. erfc —1 
is small compared to 

2Vn"t 

1   ^M V exp ^1 

The only way to verify this seems to be to look at Fisher's final solution and 
determine if this is so. 

One observation seems pertinent here.   If the diffusion equation can 
be reduced to Eq. (35) then this last step is a necessary condition for Fisher's 
solution to be a solution to the diffusion differential Eq. (26).    If, on the 
other hand, Eq. (35) is not valid, then Fisher's solution might still be a good 
approximate solution even if this last test fails. 

The next step is again one which can be checked bj means of Khipple's 
solution.   Fisher uses the equation in the slab. 

(36) 

to determine ^(y-, t ).   This requires that ac/at   in the slab be small compared 
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to 2(aG/6x,)0.    Since Fisher's solution satisfies Eq. (36) exactly, this last 

condition is a necessary one for it to satisfy the boundary condition Eq. (27). 

DISCUSSION OF BORISOY, GOUKOV AND UUBOV'S WORK 

The following is a partial study of the derivation of Fisher's solution 

from that of Whipple's by Borisov et al. (li) 

grain volume: 
Consider the formula given by Whipple for the concentration C in the 

c ■ ci ♦ Q
2 

where 

'1  n 1 - exp(-ix ) sin(nTi) & 
V 

and 

2  /       2     2 -5-   n exp(-n ) sin^ )d|i 
ni   0 

lim I '        exp(v - vg)dv 

11 
r (s) 2  v  v^ 

7 It should be noted that in the convention used by the Bovisov et al. r] m —— , 
■/Dt 

as in Whipple' s paper, but ^ ■ —2L where x is the distance measured from the 
■Jut _ 

grain boundary. (Vhipple has ^ ■ -^ .) All other symbols in C. and C« are 
■\|Dt 

the same as in Whipple's paper. 

The above ejqpression is, of course, not the final form of Whipple's 
section. 

It is desired to evaluate the contour integral of C« alon^ the y-axis 

instead of T (Sj. Kore precisely, let r(3,ej be the contour which consists of 
the part of the y-axis between the points - i3 and iS excluding the segment 
between - ie and ie. (It is assumed that S is a very large positive real number 
while e is a very small positive real number.) The remaining part of r(S,e) 

16 will be the half of the circle v B ce  which is to the right of the y-axis. 
This contour is shown in Figure 7. 
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iS K 

r{sf€) 

l€ 

-|€ ^ 

-iS< FIGLRE 7. 

It should be noted that the x and y of Figure 7 and the y to be used 
as a variable of integration on contour are not the original x and y of the 
problem. 

exp(v2 - v£) 
Let f(v) » r— . The function f(v) is analytic on 

2     v     v 
* +P + 3:iv 

r(S,e) and at all points to the right of r(S,e).   This is because the zeros of 
2     v       v2 

V-   * T * TT   are all to the left of the y-axis except for the possibility v ■ 0. 

f(v) is bounded by exp{v   - v^) aa v-t-m .   Therefore by an argument very much 
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1 ■ 

like that used .just before Eq. (21) it can be concluded that 

im    / lim expjv   - vg)dv 

r(s,6)    ^ + | + ^v 
lira 
S-t.« ■J exp(v   - v€)dv 

12     v       v^l 

Therefore it is required to evaluate 

/ 

exp(v - vC)dv 

r(s,e) 2x v x v 

This integral is clearly independent of e and so it is permissible bo 
find the limit as e^a. . 

First on the section of r(S,e) which consists of the half circle 

v^ee ,-25^<2> the integral becomes 

•r J-n/2 

exp(6 e  - ^ee ;d9 

'2  eei6  e2e2iel 

As c-^ 0 this integrand approaches l/p, uniformly in 9, therefore the integral 
approaches 

■/ 

n/2 

n/2 

For the section of r(S,6) which lies along the y-axis the substitivtion 
v ■ iy is made. On this section the integral becomes 

exp(-y2 -Cyi)  dy (     exp(-y2 - Cyi) dy L .n)   m + f 
2  y2! iy y j 2 y2 1 iy y 

If y is replaced by - y in the first integral one obtains 

S 

1. exp(-y2 - Cyi)    exp(-y2 + Cyi) 

e  n 
2-j£l 

A-l 
+ f 2. -£1 _ a. r PI  p • 

y 
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i 2i   expi'V) 
PI"1*, sin(gy) - | cos gy 

ß 

dy 

y 

In this form it is clear that there is a limit as e-*0 and this limit is 

liea f 2iea  /    exp(V) 
a(y2 - ^29) sin gy - yVDt co3(gy) 

a2(y2 - n2e)2 + y2Dt 

where 0 a Ä-1 and ß e 9a/i/St.   This now permits one to write 

i 
r(s,6) 

exp(v2 - gv)       dv 

2     v +   v2)       v 

^ + 2iea [ exp(-y ) 
a(y2 - [i2e) sin(gy) - y-fDt cos gy 

aV - ui^)2 + y2Dt y 

Now when this last expression is put into the expression for C_ one 
gets for the concentration C 

2   f       •   /     N ^ 

W 

+ -5^   /   H sin(ixT)) exj^n )d|i    /   exp(-y ) 
n / 

0 

a(y2 - |x2e) sin(gy) - yYPt cos(gy) 

a2(y2 - vW + y2Dt 7 

The next step is to evaluate the first integral and to replace |j. by g, 
y by n, T) by y/'Vüt and g by x/"VDt in the double integral.   Then 

C = 1 + 
Ue 

•a 

J  g exp(-g2) sin 

0 
^jdg j oM-S) 

V-g^sin^-^tcosj^ 

ix2üt + aV - g2e)2 

djx 
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The substitution *•   ■ C/l/Dt and \i   ■ n/YÖt gives for C, after removing the 
primes, 

n 

CO 0» 

I K sin(?y)d^ j    exp 

0 0 

(?2 + H2)Dt 
a(u2 - ?2e) cin(nx) - [i cos(ixx) 

2 x   2, 2     ^2^2 
H   + a (n   - ? 9} 

^ . (37) 

This appears to be Eq. (1.9) in the paper ty Borisov et al. (W 

The following formula is given as a consequence of Eq. (37) with some 
negligible quantities neglected. 

c -i--| X 
n 

/r z sin(T]r) + COS (T£) 
sin (ZT!)

1
/

2
 u exp(-Ti   - r| z e) d T] d z, (38) 

where 
■^Dt 

VDt '        (Dt)1/2 VSe ' T/T^' e" ar 

The substitutions 

z a a 
?20      1     . rn^V?  \i\  and TI ■ n(Dt) ' 

seer, to be the ones used to get Eq. (38). 

With these substitutions the integrand in Eq. (37) becomes 

_ gVot sin 
'IT- zn 

+ '— J GDt eaVDt 
exp 

2     T]2     ZT) V^t 
^ "e—9r~ 

z sin(rri) + cos(rri) 

(1 ♦ Z
2
)TI 

31 



.'■■ ■ =& T 
■   ■ 

where the ^ '  is left in that form so that the Jacobian will cancel it. Since 

ft"   [i 

3z 
3|j, 

a^29 
- a 

—i   =   0 as 

the Jacobian of the transformations is n/2a9C"Vl>t the reciprocal of the determinant 

8z 
35 

^3 
öS 

3z 
9u. 

±1 

With this Eq. (37) can be written 

C-l--f  X 
n 

/    /^H^e^ ZTi       l 2     TL      _ . z sin(rr)) ■«• cos rn 

0   - a-n/V^ 

y exp - T) - - -g- - ZTie . 
0 (1 ♦ z2h 

dzdr]. (39) 

Writing this again in a clearer form 

'■i* 

/ 
sm 

0   - 5r/T/Dt       \ 
^eDt + 

ZT) 

eaVot  / 
exp 2     ^ -ri   -r -   ZTlC 

z s^rr,) + cos(rTi) 

(1 + z2)ri 
dzdi) 

This reduces to Eq. (2.2) of Borisov et al.^' if the term TJ /eDt 
can be ignored compared to zr/Qa "VEt and if the lower limit on the integration 

o       o o 
on z can be replaced try 0.   The approximation - r\   - r] /Q m - r]   is always good 
since 6 is so large. 
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CONCLUSIONS AMD RECOMMENDATIONS 

The three, major published works on grain-boundary diffusion have been 
considered and the following conclusions reached. Whipple's solution is exact. 
The solution obtained tjr Borisov et al. is equivalent to that obtained by Whipple. 
The relationship of Fisher's approximation to Whipple's solution has been examined 
but no conclusion about its validity has been reached. At least one very weak 
point in Fisher's argument has been found. 

Having proceeded this far one may recognize rather sharply several 
specific problems that could very profitably be considered. Several of these 
are enumerated below. 

(1) Numerical Evaluation of Whipple's Solution. With the 
sure knowledge that Whipple's solution is exact it seems 
appropriate to inquire how well this solution describes 
experimental results. The most expedient way of 
accomplishing this would seem to be the numerical 
evaluation of Whipple's solution. Some steps in this 
direction were taken by Whipple himself, however, his 
work does not cover an adequate range of parameters. 
Furthermore, his calculations are based on a formula 
which results from taking the ratio of the grain-boundary 
diffusion coefficient to the volume diffusion constant 
to be infinite in certain of the places where it occurs 
in the exact solution. This approximation is probably 
quite adequate, however, it would be worthwhile to 
evaluate the exact solution using the value ICP for this 
ratio. This would confirm or deny our present speculation 
that taking A ■<• , as Whipple has done, does not 
introduce a serious error. If A ■» in a satisfactory 
approximation the computational effort will be substantially 
reduced. 

(2) Validity of the Steepest Decents Approximation. As is 
often the case with steepest decents evaluations of integrals 
it is difficult to establish the range of validity of Whipple's 
approximate formula. One possibility is, of course, the 
direct comparison of the approximation with the exact numerical 
results discussed above. If a theorem of the form "If the 
approximation is valid for a concentration c then it is valid 
for any concentration less than c" could be established 
analytically, then the use of numerical comparisons to determine 
the range of validity would be particularly useful. A more 
ambitious goal and, of course, one which is less likely to be 
realized is the rigorous analytical detemination of the range 
of validity of the approximation. 

(3) Analytical Approximations. A pood analytical approximation 
to Whipple's solution with carefully established limits of 
validity would be extremely valuable. The hope of finding 
such an approximation is rather remote, however, the search 
should continue as a part of any sound theoretical program. 

33 



(h)   Validity of Fisher's Approxination. The range of 
parameters for which Fisher's approximation is valid 
should be established. This investigation should 
consider the following: the actual deduction of 
Fisher's formula using Whipple's solution to study 
the approximations which are used; the shape of the 
isoconcentration contours compared with the exact 
contours} and the validity of the activity equation 
used to interpret tracer study results. 

(5) Borisov's Deduction of Fisher's Formula. Borisov^' 
claims to have deduced Fisheir's formula from the 
exact solution. His presentation is sufficiently 
sketchy that it requires a careful reexamination. 
This procedure might resolve some of the questions 
raised above and at any rate should end the controversy 
which has been going on for several years. 
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